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Abstract

Pose estimation is the task of locating keypoints for an object of interest in an im-
age. Animal Pose estimation is more challenging than estimating human pose due to
high inter and intra class variability in animals. Existing works solve this problem for
a fixed set of predefined animal categories. Models trained on such sets usually do not
work well with new animal categories. Retraining the model on new categories makes
the model overfit and leads to catastrophic forgetting. Thus, in this work, we propose a
novel problem of “Incremental Learning for Animal Pose Estimation”. Our method uses
an exemplar memory, sampled using Determinantal Point Processes (DPP) to continually
adapt to new animal categories without forgetting the old ones. We further propose a new
variant of k-DPP that uses RBF kernel (termed as “RBF k-DPP”) which gives more gain
in performance over traditional k-DPP. Due to memory constraints, the limited number
of exemplars along with new class data can lead to class imbalance. We mitigate it by
performing image warping as an augmentation technique. This helps in crafting diverse
poses, which reduces overfitting and yields further improvement in performance. The ef-
ficacy of our proposed approach is demonstrated via extensive experiments and ablations
where we obtain significant improvements over state-of-the-art baseline methods.

1 Introduction
Pose estimation is a multi-regression problem that predicts multiple keypoint locations such
as Eyes, Nose, Knees, Paws from a given input image (or video). Often the joints are strongly
articulated and can be occluded. Thus, pose estimation is quite challenging as it requires
searching in the large space of all possible articulated poses. It is an important problem in
computer vision due to its utility in several applications. Pose estimation works have inspired
human-aware robotics [31, 53], where the robot adapts to human behavior by predicting the
human poses. Moreover, there are a lot of behavioral studies on insects and lab animals, such
as Drosophila [20, 23, 46] and rats [42]. Pose estimation has also played a vital role in 3D
reconstruction of objects from images/videos [6, 22, 39, 61] and action recognition [1, 40].

Human pose estimation, where poses are predicted only for humans, is a fairly popular
problem. This is mainly due to large-scale labeled datasets that are publicly available [3, 38].
A lot of deep learning based pose estimation models have been proposed for this task includ-
ing OpenPose [12], AlphaPose [16] and DeepPose [55]. However, Animal pose estima-
tion [35, 43, 60], predicting poses for the animal classes, is comparatively a tougher problem
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to solve. In general, animals show higher inter and intra class variability compared to hu-
mans. Due to this variability, training a pose estimation model requires a larger amount of
labeled instances. Even labeling such instances is a labor-intensive task that requires basic
knowledge about the skeletal composition of the various animal species. Often, due to pri-
vacy concerns sharing these datasets publicly may not be possible. Sanakoyeu et al. [50]
publicly released only a subset of the original dataset. To learn animal pose estimation from
a limited amount of samples is a challenging problem.

In a traditional supervised setting, the set of categories that the pose estimation models
can learn to predict poses usually remains fixed after training. However, in a real-world
scenario, new categories of animals can keep coming up. Hence, our pose estimation models
should also learn to predict poses for these new categories. To achieve this, these traditional
systems would require retraining on the newly enhanced training set consisting of new class
data and old class data. Due to memory constraints, we can only store a subset of old
class data. Preserving knowledge for the old classes using only a subset of the dataset is
challenging. Hence, selecting samples efficiently in such cases becomes a vital problem.

Additionally, in the traditional supervised systems, one has to retrain the model from
scratch for the new task, which is computationally quite expensive. One may think of using
a naïve finetuning approach to learn the new categories continually. However, finetuning
suffers from overfitting on the new categories causing the pose estimation model to forget
the old categories catastrophically. In contrast, humans exhibit the remarkable ability to
learn new novel categories and retain previously acquired knowledge. Mimicking this human
behavior in artificially intelligent models becomes an interesting and challenging problem at
the same time with many exciting applications in the real world.

Research in the domain of Continual Learning, often referred to as Incremental learn-
ing, aims to develop such artificially intelligent systems that can continuously learn new
categories while preserving previously acquired knowledge for the old classes. Incremental
Learning works are often focused on the problems of Image classification [5, 13, 36, 48, 59],
Text classification [15, 49, 51] and Object detection [9, 52]. However, this problem is still
unexplored for Animal Pose estimation. Additionally, the task of pose estimation involving
multi-regression is inherently more challenging than classification or object detection.

In this work, we introduce a novel task of “Incremental Learning for Animal Pose Esti-
mation”. In this task, the system is provided with new classes in multiple incremental steps.
To mitigate the catastrophic forgetting for old classes, at each incremental step, the system
has access to an exemplar memory of fixed size in addition to the new class data. The system
has to learn to estimate poses for the new classes without forgetting the old classes. The
performance of the incremental learning system should not be affected by the order in which
the new classes are added. Thus, we also explore various such scenarios of incrementally
learning new classes via several ablation experiments.

Prior incremental learning works [13, 36] often add additional heads to the model to learn
the new classes. This is memory inefficient, as the number of the parameters grows with the
addition of new classes. Our approach does not add any additional layers for incremental
steps, keeping the number of parameters for the model constant with the incremental steps.
We propose to use Determinantal Point Process (DPP) [28] as a sampling approach to provide
a diverse exemplar memory. DPP has been theoretically proven to sample a diverse set of
points. To sample a fixed set of k points, we specifically use k-DPP [29]. We observed that
the rank of the kernel is a limitation to the number of points one can sample from k-DPP.
The rank of the linear kernel, the kernel used in most of the DPP applications [27, 29], is
not sufficient enough to select the required amount of samples. Thus, to overcome this,
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we propose a new variant of k-DPP that uses RBF Kernel (named as “RBF k-DPP”). Our
proposed k-DPP variant overcomes the limitation of the number of points that can be sampled
and performs even better than the k-DPP with a linear kernel. Additionally, to augment the
exemplars, we also use an image warping technique to generate varied poses for a given
image. This helps to overcome the class-imbalance and reduces the overfitting on the new
class data, leading to further improvement in performance.

We summarize our contribution as follows:
• To the best of our knowledge, we are the first to introduce and solve the novel problem

of “Incremental Learning for Animal Pose Estimation”.
• Our proposed method leverages Determinantal Point Processes (DPPs) to select sam-

ples for the exemplar memory.
• We propose a new variant of k-DPP that uses RBF Kernel (named as “RBF k-DPP")

which overcomes the sampling limitation of k-DPP.
• We also propose to use an image warping-based augmentation technique to generate

varied poses for the exemplar memory, which further improves the performance.
• The effectiveness of our proposed approach is shown through extensive experiments

and improvements over state-of-the-art baselines.

2 Related Works
Our work is closely related to Pose estimation, Incremental Learning, DPP, and Image Warp-
ing. Thus, we provide a brief description of the relevant works in these domains.

Human Pose Estimation: Human pose estimation, both in 2D and 3D, has been exten-
sively studied in the literature. Given that our work focuses mainly on 2D pose estimation,
we discuss the works belonging to them. Toshev and Szegedy [55] proposed DeepPose, one
of the first major works in human pose estimation using Deep Neural Networks. In recent
times, a lot of deep learning based models are proposed such as Stacked Hourglass [45],
OpenPose [12], MaskRCNN [21], PoseResnet [58] and AlphaPose [16]. In our current
work, we demonstrate our proposed method on the AlphaPose and PoseResnet. However,
our framework is independent of the choice of the pose estimation model.

Animal Pose Estimation: Few works exist in this domain, and it is relatively less studied
than human pose estimation. Some of the recent works have focused on designing pose
estimation systems and studying biological functions for specific animals such as Drosophila
flies [20, 35, 46], rats [42] and in the wild animals [34, 44]. There are various toolkits
proposed for annotating animal poses, such as DeepPose Kit [19], DeepLabcut [42] and
AniPose [23]. However, these works are limited to specific animal classes.

Recently, Cao et al. [11] and Sanakoyeu et al. [50] showed an effective domain adapta-
tion strategy to predict pose for animal classes using human priors. Li et al. [32] and Mu et
al. [44] proposed unsupervised domain adaptation strategies to predict animal poses. How-
ever, our proposed approach does not need any such prior knowledge. A major limitation of
their approach is that it cannot adapt to new animal classes incrementally without retraining
the model. If exemplars are sampled incorrectly, then the model performance on old classes
may deteriorate, eventually leading to low performance on the combined animal classes. Our
proposed sampling strategy tries to retain the old classes’ acquired knowledge.

Incremental Learning: The works in this area are limited to Text Classification [15,
49, 51], Object Detection [9, 52], and Image Classification [5, 13, 36, 48, 59]. One way to
mitigate catastrophic forgetting in incremental learning is weight regularization, where a reg-
ularization term is added to the loss function [2, 25]. Another way is to use exemplar memory
built with samples from the old classes. Sampling a set of exemplars is a challenging task
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because the small representative set should help the model preserve the knowledge of the
old classes. A naïve approach is selecting samples randomly from the entire set. This mini-
mizes forgetting to minor extent and is computationally inexpensive [14, 48]. GDumb [47]
is another approach that greedily balances the exemplar memory using random sampling.
To improve performance further, Herding [13, 48] is proposed where samples around the
class means are chosen as representative samples. Dark Experience Replay (DER) [10] uses
reservoir sampling to select the samples for the exemplar memory.

Many approaches that commonly use exemplar memory further use Knowledge Distilla-
tion to regularize the model. Rebuffi et al. [48] propose iCaRL that uses an exemplar mem-
ory, sampled using herding strategy, and knowledge distillation loss to mitigate catastrophic
forgetting. iCaRL performs better than LwF [36], which does not have an exemplar memory
and performs distillation on new class data. Castro et al. [13] improved their performance
over iCaRL by adding a balanced finetuning stage to reduce the model’s bias towards the
new classes. However, Belouadah and Popescu [5] show that even finetuning on exemplars
performs better than distillation on them. Our results show a similar trend.

Image Warping: This technique is widely used in applications such as surveillance [37],
Image enhancement [24]. Mesh warping using triangular meshes, like Delaunay Triangula-
tion [30] is a popular approach to transform images. However, getting mesh labels is a chal-
lenging task. A simpler warping technique is Thin-Plate Splines proposed by Bookstein [7],
which takes an image and control points for before and after transformation to transform the
grid space. Unlike most works, we use Image warping, Thin-Plate Splines in particular, as
an augmentation technique to generate images with diverse poses for the exemplar memory.

DPP: Selecting samples for exemplar memory is an essential task in incremental learning
setup. Determinantal Point Processes (DPPs) [28] are elegant probabilistic models that are
theoretically proven to sample a diverse set of points for various tasks, including summariza-
tion [18], text summarization, image search, and poses [27]. A conditional DPP, k-DPP [29]
is often used in real-world applications as it can sample exactly k samples from the DPP.

3 Proposed Approach
Pose estimation aims to predict the spatial coordinates for a given input image. To train a
model in a supervised setting, we have access to the training dataset D = (I,G), where I are
the input images, and G are the ground-truth pose labels. For an ith image, its ground-truth
pose label, Gi, can be expressed as,

Gi = {gi
1,g

i
2, ...g

i
J} ∈ IRJ×3 (1)

where J denotes the number of keypoints and gi
j is the jth keypoint label for the ith im-

age. Each keypoint label, gi
j, consists of the spatial coordinates and a value for whether the

keypoint is visible in the image or not. Generally, the keypoint labels for an ith image are con-
verted to heatmaps, hi

j for each j ∈ {1,2, ...J} using the Gaussian Kernel [12, 16, 33]. Specif-
ically, we center the Gaussian kernel on the spatial coordinates of the keypoint zi

j = (xi
j,y

i
j).

Mathematically, hi
j can be formulated as follows,

hi
j(x j,y j) =

1√
2πσ2

exp
(
−
[(x− x j)

2 +(y− y j)
2]

2σ2

)
(2)

where (x,y) denote the spatial location in the input image and σ is the standard deviation.
The MSE loss between hhh j and ĥhh jjj is used for training a supervised pose estimation for all
keypoints j ∈ {1,2, ...J}, where ĥhh jjj are the predicted heatmaps.
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RBF k-DPP

Ci0 Ci1 ...

New class data 

Removal of
samples

Selecting samples
from new class data

Exemplar memory

Ci-10 ... Ci-20 ...Ci-11

Mi-1

Mi

Ci-1
1Ci-10 ... Ci-20 ...Ci-11

Example of exemplars after
removal from exemplar memory 

Example of new class
(horse) data sampled

Updated Exemplar Memory

Ci0 ... Ci-10 ...Ci-11Ci1

Image  Warping
Augmentation

Figure 1: Our proposed strategy for an ith incremental step is shown. After training the model Mi
we update the exemplar memory by selecting new class samples and removing old class samples using
RBF k-DPP. Image warping augmentation is further used to overcome class-imbalance.

Initially, the pose estimation model, M0(·), is trained on the dataset D0 containing “a”
base classes denoted by C0 = {C1

0 ,C
2
0 , ...,C

a
0} base classes. At each ith incremental step,

we add a dataset Di containing “b” new classes, namely Ci, where i ∈ {1,2, ...,k} denotes
the incremental step. The goal of the pose estimation model, Mi(·), is to learn to predict
keypoints on the new classes, Ci, added at the incremental step i, without forgetting the old
classes, i.e. C0

⋃
C1
⋃

C2...
⋃

Ci−1.
To mitigate catastrophic forgetting, we use an exemplar memory [5, 13, 48] consisting

of selected samples from old classes data. At each incremental step, the model, Mi(·), has
access to the new class data , Dnew belonging to the set of classes, Ci, and an exemplar mem-
ory, E, containing data, Dexemplar, which consists of the classes that the model has already
seen, namely C0

⋃
C1
⋃

C2...
⋃

Ci−1. An overview of our proposed approach for Incremental
Learning on Animal Pose Estimation is shown in Figure 1. In the next section, we discuss
our method of the selection of samples for the exemplar memory in detail.

3.1 Exemplar memory
The exemplar memory, E, plays an important role in incremental learning to mitigate for-
getting. This memory helps the model to preserve the knowledge for the old classes. Thus,
we focus on developing the best strategy to select exemplars for our pose estimation task
that can best represent the classes on which the model is trained. The model uses E as a
means to revise the old classes. We primarily investigate the fixed memory setup, where the
memory size is fixed to Γ. The size of the memory is independent of the number of classes.
The number of samples per class, n stored in the exemplar memory, is n =

⌊
Γ

c

⌋
, where c

is the number of classes that the model M has previously seen. After training the model at
an incremental step, the exemplar memory is updated by removing samples from the current
memory (Sec. 3.1.1) and adding selected samples from the new class data (Sec. 3.1.2).

3.1.1 Selection of new samples for the exemplar memory using DPP

The exemplar memory plays a pivotal role in the continual learning system, as the model
uses only the exemplar memory to retain the knowledge for old classes. A diverse set of
exemplars can help the model preserve the acquired knowledge. Selecting samples for the
exemplar memory from the new class data is, therefore, a vital task for incremental learning.

Determinantal point processes (DPP) [18, 27, 28, 29] are elegant probabilistic models
that can capture negative correlation and are theoretically proven to sample a diverse set of
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samples. Let the set of pose labels for N samples be denoted as V = {G0,G1, ...GN}. The
probability of selecting a random subset, S⊆ V from the power set, 2V , is given as:

PL(S;L) =
det(LS)

det(I +L)
(3)

where L is real positive semi-definite kernel matrix, referred as L-ensemble [8], LS = [Li j]yi,y j∈S
is the restriction of K to the rows and columns indexed by S, and I is the Identity matrix.

However, DPPs have a limitation, they are not constrained on the size of the optimal
subset selection. This is not desirable for building exemplar memory in our case, as we need
a fixed set of samples from the DPP. Thus, a conditional DPP has to be used. A variation of
DPP, k-DPP [29], models only sets with cardinality k. The k-DPP is formulated as,

Pk
L(S;L) =

det(LS)

∑|S′|=k det(LS′)
(4)

where the cardinality of the set S is k, i.e. |S|= k, and L is a positive semi-definite kernel. It
is important to note that k ≤ rank(L). To find the most likely subset from a k-DPP, we can
simply use a MAP estimate,

SMAP
k−DPP = argmaxSPk

L(S;L) (5)

Finding the MAP estimate is a NP-Hard problem [26]. Thus, it’s greedy approximation is
used [27, 28]. We discuss two different kernels that are used to construct the k-DPPs.
Linear kernel: The linear kernel [27, 28] function, FL, is used to calculate the entries, xi j
(ith row and jth column), in the L-ensemble kernel matrix. The value of xi j is denoted by
FL(xxxiii,xxx jjj) which is calculated as,

FL(xxxiii,xxx jjj) = (xxxiii · xxx jjj) ∀xxxiii,xxx jjj ∈ V (6)

To compute the L-Ensemble matrix (L) using FL, we can simply do, L = AAT , where A is the
matrix of the pose labels for a particular class. The shape of this A matrix is (N,J,3); where
N is the number of data points for a particular class and J are the number of keypoints, each
keypoint consists of (x,y) co-ordinate location of the keypoint and whether the keypoint is
visible or not. We reshape the A matrix to (N,J× 3) for simplicity. Thus, the rank of L is
given by

rank(L) = min(rank(AT ),rank(A)) (7)

The maximum rank of L can thus be J× 3. Thus, the maximum value of k, the number of
points that can be be sampled in k-DPP is J× 3, which can be very less compared to the
required amount of samples.

To overcome the above limitation, we cluster the entire data into h clusters using K-
Means [4, 17, 41] based on the pose labels (named as ‘k-DPP w/ clustering’), where h =
bN/(J×3)c. From each cluster, we sample J×3 exemplars giving us the desired number of
points to be sampled for each class. This is computationally expensive because of the com-
putational costs of K-Means and k-DPP. Due to varying cluster sizes and densities, K-Means
can often give sub-optimal clustering of the data. Also, the initialization of cluster centroids
can further heavily influence the performance in selecting a diverse set of points.
Proposed k-DPP variant (Radial Basis Function (RBF) Kernel based k-DPP): To over-
come the bottleneck of K-Means clustering for the linear kernel and the computational costs,
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we use the Radial Basis Function (RBF) to generate the L-ensemble for k-DPP (named as
‘RBF k-DPP’). In order to use RBF for constructing an L-Ensemble, we need to show that
the RBF is positive semi-definite or a kernel. The proof for this can be referred from Sup-
plementary. The RBF kernel function used to calculate entries, xi j (ith row and jth column),
in the L-ensemble kernel matrix is formulated as,

FRBF(xxx111,xxx222) = exp(−γ ‖xxx111− xxx222‖2) (8)

where γ ≥ 0 is an hyper-parameter.
The rank of the RBF Kernel matrix, in the worst case, grows polynomially with the data

dimension [56]. For our case, the rank of the RBF Kernel is sufficiently large enough to sam-
ple any amount of samples. This removes the dependency on the use of K-Means clustering
and thus is only required to be applied once per class, thereby reducing the computational
costs significantly. Moreover, we observed RBF k-DPP also performs better than the k-DPP
w/ clustering.
3.1.2 Removal of samples from the Exemplar Memory

After each Incremental step, the Exemplar Memory, E, is updated to accommodate new
classes in the memory. To achieve this, we first select a subset of samples for the classes
already present in Exemplar memory to make room for new class samples. Removal of
samples for the old classes is done by applying the k-DPP again on exemplary memory.
After this operation, the removed samples are never used again.

3.2 Image Warping Augmentation
To further augment the exemplar memory, we use Thin Plate Splines Image warping (TPS)
[7] to generate samples with different poses. TPS achieves image warping by taking two
sets of control points, the input, and the output control points. For our case, we take the
limbs visible in the image for an animal, specifically the knee and the paw keypoints. We
rotate these keypoints by a small random angle about the elbow keypoint for the respective
limb to get the output control points. The rotation of these keypoints is done under skeletal
constraints for each animal. TPS then aligns the input and the output control point sets by
warping the grid. We further use the image In-painting technique based on the work by
Telea [54] to fill in the empty portions of the image. This in-painting starts from the region’s
boundary, then gradually fills points towards the center of the region. Each pixel is assigned
a normalized value from a small neighborhood of pixels around it. Refer supplementary for
visualization of samples, before and after image warping and in-painting operations.

4 Experiments
We use Finetuning as our first baseline, where the model is finetuned on the new class data
and has no access to the exemplar memory. Further, we compare the performance of our k-
DPP constructed using RBF and Linear Kernel against Herding strategy and Random Sam-
pling strategy [13, 48]. Additionally, we compare our proposed method against some of
the heuristic baselines. We modify popular class-incremental learning works on image clas-
sification and adapt them to our pose estimation task, which serve as strong baselines for
comparison. Oracle denotes the performance of the model when it has access to the entire
old class samples, an upper bound for all the approaches.
Random Sampling Strategy: This is one of the easiest ways where n samples are randomly
selected from the entire set of samples to build the memory.
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Herding Strategy: This has been widely used as a sampling technique for exemplar mem-
ory [13, 48, 57]. We sort the samples based on the distance from the mean pose for each
class. We then select the top-n samples for each class from these sorted lists of samples.
Adapted-iCaRL: We modify iCaRL [48], originally proposed for classification, to make it
suitable for pose estimation task. We replace the cross-entropy loss term with MSE loss for
the new class data. We perform distillation on the exemplar memory, built using herding
strategy, with MSE loss between the model from the previous incremental step and model at
the current step. We give equal weightage to both the MSE loss terms.
Adapted-EEIL: Following the work Castro et al. [13], we add a balanced finetuning step,
where equal number of samples for all the classes are considered and distillation loss on the
new class data is also applied.
Adapted-DER++: We use the Dark Experience Replay (DER) sampling strategy proposed
by Buzzega et al. [10] to select the samples for the exemplar memory at each incremental
step. We modify the cross-entropy loss with the MSE loss and use the regularization losses
proposed in their work.
Adapted-GDumb: We use the Greedy sampling strategy proposed by Bin et al. [58] to se-
lect the samples for the exemplar memory. We use the MSE loss for training the model at
each incremental step.
Refer supplementary for more details on adapted baselines.

4.1 Implementation and Setting
We use AlphaPose [16] and PoseResnet [58] as the pose estimation models in our exper-
iments. We select 17 keypoints similar to Cao et al. [11]. We set the value of σ = 2 for
generating Gaussian heatmaps. We perform experiments on the Animal-Pose Dataset [11]
which contains a total of 5117 instances from five animal classes, namely {Cat, Cow, Dog,
Horse, Sheep}. We consider two different sizes for the fixed exemplar memory, Γ = 500
and Γ = 1000 samples which are only 9.7% and 19.5% of the total dataset size. We repeat
the experiments three times and report the mean and standard deviation of the PCK@0.05
values for the predictions made by the pose estimation model on all the classes.

4.2 Results and Discussion
We first begin with one base class, ‘cat’, and then incrementally add one animal class at each
step in the order of ‘horse’, ‘cow’, ‘dog’, ‘sheep’.

Approach

Memory Sizes (Γ)
1000 500

Incremental steps Incremental steps
1 2 3 4 1 2 3 4

Oracle 87.49 ± 0.20 87.51 ± 0.16 84.01 ± 0.22 83.47 ± 0.23 87.49 ± 0.20 87.51 ± 0.16 84.01 ± 0.22 83.47 ± 0.23
Finetuning 64.51 ± 0.50 56.76 ± 0.16 56.56 ± 0.37 52.47 ± 0.47 64.50 ± 0.49 56.76 ± 0.16 56.56 ± 0.37 52.17 ± 0.47
Random 83.86 ± 0.16 78.14 ± 0.25 66.02 ± 0.61 64.22 ± 0.36 80.64 ± 0.17 74.12 ± 0.28 64.00 ± 0.22 60.88 ± 0.26
Herding 82.93 ± 0.29 75.90 ± 0.34 65.96 ± 0.34 61.69 ± 0.18 80.56 ± 0.14 71.82 ± 0.31 62.64 ± 0.18 59.16 ± 0.27

k-DPP w/ clustering (Ours) 84.14 ± 0.12 79.07 ± 0.29 67.75 ± 0.31 65.48 ± 0.43 81.63 ± 0.65 74.32 ± 0.43 64.65 ± 0.14 61.71 ± 0.10
RBF k-DPP (γ = 0.5) (Ours) 84.20 ± 0.48 78.99 ± 0.20 71.00 ± 0.28 68.77 ± 0.31 81.56 ± 0.06 74.71 ± 0.09 64.73 ± 0.12 61.88 ± 0.34
RBF k-DPP (γ = 50) (Ours) 83.80 ± 0.25 79.21 ± 0.35 71.38 ± 0.28 68.72 ± 0.08 81.56 ± 0.30 74.59 ± 0.25 65.26 ± 0.44 62.42 ± 0.27

RBF k-DPP (γ = 100) (Ours) 83.55 ± 0.11 79.21 ± 0.33 71.07 ± 0.42 68.86 ± 0.52 81.54 ± 0.39 75.01 ± 0.13 65.04 ± 0.18 62.46 ± 0.14

Table 1: Mean and Standard deviation of the overall PCK@0.05 of the model across classes are
reported in the table. We show results for two fixed memory sizes, Γ = 500 and Γ = 1000 samples. We
perform three ablations on γ for RBF kernel, with the values 0.5, 50 and 100.

Efficacy of k-DPP: From Table 1, we observe that our proposed approach of k-DPP w/
clustering performs better than the popularly used Herding strategy by 2.5% for the memory
Γ = 500 samples, and 3.8% for Γ = 1000 samples, at the final incremental step. For the case

Citation
Citation
{Castro, Mar{í}n-Jim{é}nez, Guil, Schmid, and Alahari} 2018

Citation
Citation
{Rebuffi, Kolesnikov, Sperl, and Lampert} 2017

Citation
Citation
{Welling} 2009

Citation
Citation
{Rebuffi, Kolesnikov, Sperl, and Lampert} 2017

Citation
Citation
{Castro, Mar{í}n-Jim{é}nez, Guil, Schmid, and Alahari} 2018

Citation
Citation
{Buzzega, Boschini, Porrello, Abati, and Calderara} 2020

Citation
Citation
{Xiao, Wu, and Wei} 2018

Citation
Citation
{{Fang}, {Xie}, {Tai}, and {Lu}} 2017

Citation
Citation
{Xiao, Wu, and Wei} 2018

Citation
Citation
{Cao, Tang, Fang, Shen, Tai, and Lu} 2019

Citation
Citation
{Cao, Tang, Fang, Shen, Tai, and Lu} 2019



NAYAK ET AL.: ILAPE USING RBF K-DPP 9

of Γ = 500 samples, we see a small improvement in performance for RBF k-DPP. Note that
k-DPP with K-Means has its own shortcomings. It is computationally expensive since we
have to perform the sampling using k-DPP for each cluster, whereas in RBF k-DPP, sampling
is performed only once. For Γ = 1000 samples, we get an improvement of 3.2% in the per-
formance for RBF k-DPP (γ = 50) against k-DPP w/ clustering. The effectiveness of RBF
k-DPP can be seen with the increase in the number of incremental steps. Selection of a set
of diverse exemplars becomes crucial with the increase in incremental steps as the number
of samples per class decreases. RBF k-DPP is more effective in handling this compared to
traditional k-DPP with K-Means.

Approach

Memory sizes (Γ)
1000 500

Incremental steps Incremental Steps
1 2 3 4 1 2 3 4

k-DPP w/ clustering (Ours) 84.14 ± 0.12 79.07 ± 0.29 67.75 ± 0.31 65.48 ± 0.43 81.63 ± 0.65 74.32 ± 0.43 64.65 ± 0.14 61.71 ± 0.10
RBF k-DPP (γ = 50) (Ours) 83.80 ± 0.25 79.21 ± 0.35 71.38 ± 0.28 68.72 ± 0.08 81.56 ± 0.30 74.59 ± 0.25 65.26 ± 0.44 62.42 ± 0.27

RBF k-DPP (γ = 50) +
Augmentation (Ours) 84.57 + 0.22 81.88 + 0.35 74.52 + 0.44 71.53 + 0.34 81.79 ± 0.17 74.97 ± 0.06 66.49 ± 0.23 63.01 ± 0.11

Table 2: Effect of Augmentation; Performance of our proposed RBF k-DPP (γ=50) with augmentation
against RBF k-DPP(γ=50) and k-DPP w/ clustering.

Effectiveness of Proposed Augmentation: Table 2 shows the effectiveness of our proposed
image warping augmentation strategy on top of the proposed DPP variant (RBF k-DPP). We
obtain further improvement of 0.6% and 2.8% at the final incremental step for Γ = 500 and
Γ = 1000 samples, respectively. This improvement can be attributed mainly to the enhanced
intra-class variance and diversity in poses after augmentation. It thus helps the model to
overfit less on the new classes by overcoming class imbalance.

Approach

Memory sizes (Γ)
1000 500

Incremental steps Incremental Steps
1 2 3 4 1 2 3 4

Adapted - iCaRL 61.90 ± 0.09 48.49 ± 0.43 38.51 ± 0.39 34.88 ± 0.47 61.64 ± 0.49 47.15 ± 0.50 39.24 ± 2.62 37.53 ± 1.16
Adapted - EEIL 72.17 ± 0.63 64.86 ± 0.66 60.43 ± 0.69 57.41 ± 0.01 69.15 ± 0.15 59.99 ± 0.32 58.64 ± 0.31 56.05 ± 0.04

Adapted - DER++ 76.29 ± 0.32 68.93 ± 0.71 59.60 ± 0.12 56.28 ± 0.25 72.56 ± 0.33 64.80 ± 0.43 55.57 ± 0.13 51.67 ± 0.52
Adapted - GDumb 83.11 ± 0.16 77.48 ± 0.35 66.89 ± 0.23 63.22 ± 0.42 81.12 ± 0.28 73.20 ± 0.17 63.93 ± 0.22 60.40 ± 0.46

RBF k-DPP (γ = 50) +
Augmentation (Ours) 84.57 + 0.22 81.88 + 0.35 74.52 + 0.44 71.53 + 0.34 81.79 ± 0.17 74.97 ± 0.06 66.49 ± 0.23 63.01 ± 0.11

Table 3: Performance of our proposed RBF k-DPP (γ=50) with augmentation against adapted incre-
mental learning baselines using AlphaPose model [16]

Comparison against Adapted Incremental Learning Baselines: We compare our pose
incremental learning model’s performance against the state-of-the-art iCaRL, EEIL, DER++
and GDumb adapted for the pose estimation task in Table 3. We observe a significant im-
provement of 2.6%, 11.3%, 7% and 25.5% in performance against GDumb, DER++, EEIL
and iCaRL, respectively at Γ = 500 samples. Further, at Γ = 1000 samples, our proposed
method again obtains significant improvement of 8.31%, 15.25%, 14.1% and 36.6% over
GDumb, DER++, EEIL and iCaRL, respectively.
Other Incremental Learning Setups: We further perform experiments with different setups
for incremental steps as shown in Figure 2. Our proposed approach consistently performs
better than the adapted versions of the state-of-the-art works.
Comparison with other Augmentation Strategy: In Table 4, we compare the performance
of our proposed Image Warping augmentation method with other augmentation strategies,
namely Rotation, Flipping and Gaussian Noise. We obtain 1.5%, 0.3% and 0.1% improve-
ment in performance over Noise, Rotation and Flipping respectively at Γ = 1000. Also, we
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further observe an improvement of 1.7%, 0.9% and 0.8% compared to Noise, Rotation and
Flipping respectively for Γ = 500.

(a) (b) (c) (d)

Figure 2: Experimental Results for different setups of incremental steps. Base classes for (a) and (b)
are {‘cat’, ‘cow’, ‘dog’} while {‘horse’} and {‘sheep’} are added at incremental steps. Similarly, the
base class for (c) and (d) is ‘cat’, where {‘horse’, ‘cow’} and {‘dog’, ‘sheep’} are added at incremental
steps. We set Γ = 1000 samples for (a) and (c) and Γ = 500 samples for (b) and (d).

Approach

Memory sizes (Γ)
1000 500

Incremental steps Incremental steps
1 2 1 2

RBF k-DPP (γ = 50) + Flipping 81.53 ± 0.23 75.46 ± 0.35 81.53 ± 0.28 73.41 ± 0.36
RBF k-DPP (γ = 50) + Rotation 81.84 ± 0.42 75.31 ± 0.24 81.13 ± 0.24 73.29 ± 0.51

RBF k-DPP (γ = 50) + Noise 81.81 ± 0.18 74.09 ± 0.19 81.39 ± 0.42 72.53 ± 0.25
RBF k-DPP (γ = 50) +
Augmentation (Ours) 82.05 ± 0.15 75.59 ± 0.13 82.03 ± 0.34 74.19 ± 0.33

Table 4: Experimental results of our proposed augmentation strategy against other augmentation
strategies, Flipping, Rotation and Gaussian Noise. We consider {‘cat’, ‘cow’, ‘dog’} as base classes
while {‘horse’} and {‘sheep’} are added at incremental steps.

Experiments on PoseResnet model [58]: We compare the performance of our proposed
approach against the adapted state-of-the-art Incremental Learning baselines iCaRL, EEIL,
DER++ and GDumb on PoseResnet [58] architecture. As observed in Table 5, our proposed
approach achieves better performance than the adapted baselines for both the exemplar mem-
ory settings (≈ 4.2% for Γ = 1000 and ≈ 1.5% for Γ = 500).

Approach

Memory sizes (Γ)
1000 500

Incremental steps Incremental Steps
1 2 1 2

Adapted - iCaRL 50.30 ± 0.31 37.80 ± 0.40 46.60 ± 0.26 35.93 ± 0.26
Adapted - EEIL 45.30 ± 0.19 39.97 ± 0.46 41.33 ± 0.36 38.72 ± 0.55

Adapted - DER++ 54.50 ± 0.24 47.92 ± 0.31 52.00 ± 0.30 47.27 ± 0.35
Adapted - GDumb 55.35 ± 0.28 51.45 ± 0.49 51.21 ± 0.43 47.64 ± 0.39

RBF-DPP (γ = 50) +
Augmentation (Ours) 57.93 ± 0.32 55.72 ± 0.22 52.45 ± 0.31 49.1 ± 0.36

Table 5: Performance of our proposed RBF k-DPP (γ = 50) against adapted incremental learning base-
lines using PoseResnet model [58]. We consider {‘cat’, ‘cow’, ‘dog’} as base classes while {‘horse’}
and {‘sheep’} are added at incremental steps.

5 Conclusion
This paper proposes a novel task of incrementally learning to predict pose for animals. Our
experimental results show: i) selection of samples for the exemplar memory plays a pivotal
role in incremental learning, ii) the effectiveness of proposed k-DPP over the popular heuris-
tic baselines, iii) our proposed RBF k-DPP performs significantly better than state-of-the-art
baselines and yields more gain over k-DPP besides being less computationally expensive, iv)
augmentation using image warping handles class imbalance and improves performance.
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Supplementary for
“Incremental Learning for Animal Pose

Estimation using RBF k-DPP”

1 Detailed Diagrammatic View of our Approach
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Figure 1: (A) Complete overview of our approach. We depict training process at the second incre-
mental step. The model MMM222 is initialized with the weights of MMM111 and its weights are kept trainable.
Augmentation module is explained in detail in Figure 2. (B) To update the exemplar memory, we
remove samples from Dexemplar

0 , and select new samples from new class data, D1. Thus, Dexemplar
1 is

obtained after this update step which is used along with Daug
1 and D2 to train MMM222.
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2 Image Warping Augmentation
Figure 2, describes the image warping and in-painting operations which are used as an aug-
mentation technique and are applied on the input images of animal pose data. The limbs of
horse in Figure 2 (c) are rotated by a small angle using Thin Plate Splines (TPS Module).
We then perform image in-painting to fill in the pixels with no values.

The proposed augmentation when applied to samples from the exemplar memory helps
in creating diverse poses. This eventually mitigates class imbalance between new class data
and exemplar memory during the training at each incremental step. Figure 3 demonstrates
samples generated using this augmentation technique.

(i) Input Image (ii) Output After Image Warping (iii) Final Output Image

Image In-painting

TPS Module

Blue:  Input control points 
Red: Output control points

Warping the grid space to match
input and output control points

TPS
Module

Rotation

Input control points
(GT pose labels) Output control points

(a) (b)

(c)

Figure 2: Overview of Image warping and in-painting augmentation. (a) Ground truth pose
labels are taken as Input control points, we rotate these keypoints by a small angle under
skeletal constraints for each animal to get the Output control points, (b) TPS warps the image
grid space to match the input and output control points, (c) We show steps of the proposed
augmentation technique (i) For demonstration we only rotate the left frontal leg of the horse,
cyan dots represent the original keypoints and red dots represent the rotated keypoints, (ii)
After TPS warping, we get the rotated left front limb, (iii) Final output image is generated
after applying image in-painting.
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(a) Before Augmentation (b) After Augmentation

Figure 3: The images in (a) are before augmentation, images in (b) are after image warping
and in-painting augmentation applied to respective images in (a).
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3 Proof for “RBF is positive semi-definite”
The Radial Basis Function, FRBF(x,y), when x, y are real numbers, is given as

FRBF(x,y) = exp(−‖x− y‖2

2σ2 ) (1)

Without the loss of generality, we can assume that σ = 1. We can further, write FRBF(x,y) =
h(x− y), where

h(t) = exp(− t2

2
)

= exp(0(it)+1/2(1)2(it)2),

(2)

here i denotes iota.
Let’s assume that Z is a random variable where Z ∼ G(0,1), G is the Gaussian distribu-

tion. and we know that moment generating function for Gaussian distribution can be written
as,

MZ(x) = exp(µx+(σ2x2)/2) (3)

From Eq. 2 and Eq. 3 we get,

h(t) = MZ (it)

= E[eitZ ]
(4)

Any m×m matrix A is positive semi-definite if,

vvvT Avvv≥ 0, ∀v ∈ Rm (5)

Thus, for real numbers x1,x2, ...xn and a1,a2, ...an, a quadratic form of FRBF , would be

n

∑
j=1

n

∑
k=1

a jakFRBF(x j,xk) =
n

∑
j=1

n

∑
k=1

a jakh(x j− xk) (6)

Thus it is sufficient to prove that,

n

∑
j=1

n

∑
k=1

a jakh(x j− xk)≥ 0 (7)

Therefore,

n

∑
j=1

n

∑
k=1

a jakh(x j− xk) =
n

∑
j=1

n

∑
k=1

a jakE[ei(x j−xk)Z ]

= E[
n

∑
j=1

n

∑
k=1

a jeix jZake−ixkZ ]

= E[|
n

∑
j=1

a jeix jZ |2]≥ 0,

(8)

This entails that the Radial Basis Function FRBF is positive semi-definite, and thus a kernel.
Without loss of generality, the same proof can be extended when x and y are vectors.
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4 Baselines

Adapted-iCaRL: At each incremental step i, we first concatenate the exemplar memory
and the new class(es) training data,

D←Dexemplar
⋃
Dnew (9)

where Dexemplar consists of old classes, i.e. C0
⋃

C1...
⋃

Ci−1 and Dnew consists of the new
classes which the model has to learn, i.e. Ci. Thus, D consists samples from the entire set,
C0
⋃

C1...
⋃

Ci

We use the following loss function for the training procedure.

L= α ∗Σ(x j ,y j)∈Dexemplar
MSE(Mi−1(x j),Mi(x j))+(1−α)∗Σ(xk,yk)∈Dnew MSE(Mi(xk),yk)

(10)
where α is an hyperparameter in the loss function, we set α = 0.5 for all the experiments.

We use the herding strategy to sample the exemplar memory, similar to what was used in
the original implementation of iCaRL.

Adapted-EEIL: At each incremental step i, we first train the model similar to Adapted-
iCaRL’s training step, which comprises of the data from exemplar memory and the new
class(es) data. After this step, we perform additional balanced finetuning, as done in EEIL [13].
This balanced finetuning is performed on a training subset containing equal number of sam-
ples for each class. This is done by sampling n samples for the new class data, D′new, by
using the Herding strategy. We use the model in the training step performed before balanced
finetuning step, M′i , as the teacher network for the Knowledge Distillation loss term. The
weights of this model are frozen and it’s predicted heatmaps are used for loss calculations.
The updated loss term used for this step is given as,

Lold = α ∗Σ(x j ,y j)∈Dexemplar
MSE(M′i(x j),Mi(x j))+(1−α)∗Σ(x j ,y j)∈Dexemplar

MSE(Mi(x j),yk)
(11)

Lnew =α ∗Σ(xk,yk)∈D′new
MSE(M′i(xk),Mi(xk))+(1−α)∗Σ(xk,yk)∈D′new

MSE(Mi(xk),yk) (12)

L= Lold +Lnew (13)

where α is an hyperparameter in the loss function, we set α = 0.5 for all the experiments.
After the balanced finetuning step, we update the exemplar memory by removing samples

from the exemplar memory, and adding samples for the new class.

5 Hyperparameter details

A list of hyperparameters used in this work is provided in Table 1.
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Hyperparameters Value
Input Image Size 512x512

Output Heatmap Size 128x128
Base Model Training Epochs 30

Base Model Optimizer Adam
Base Model Learning Rate 0.0001

Batch size for training Base Model 13
Incremental Model Training Epochs 20

Incremental Model Optimizer Adam
Incremental Model Learning Rate 0.0001

Batch Size for training Incremental
Model 5

Balanced Finetuning Training Epochs
(Adapted EEIL) 5

Balanced Finetuning Optimizer
(Adapted EEIL) Adam

Balanced Finetuning Learning Rate
(Adapted EEIL) 0.00001

Batch Size for Balanced Finetuning
(Adapted EEIL and iCaRL) 5

α (Adapted EEIL and iCaRL) 0.5
Table 1: Hyperparameter details used in this work.

6 Additional Experiments

We perform additional experiments on a different setup, i.e. growing memory case, where
the number of samples per class remains fixed. We perform experiments in such a scenario
to further demonstrate the efficacy of our approach. We restrict ourselves to 10% of samples
for each class. The results are shown in the Table 2. We observe that our proposed DPP
w/ clustering performs significantly better than the Random and Herding strategy baselines.
Further, our proposed RBF k-DPP (γ = 50) improves the performance on DPP w/ clustering.

Approach Incremental Steps
1 2

Oracle 0.8478 0.8457
Herding 0.7513 0.6626
Random 0.7982 0.7259

DPP w/ clustering (Ours) 0.8245 0.7613
RBF k-DPP (γ = 50)

(Ours) 0.8291 0.7799

Table 2: PcK@0.05 results for Growing memory (fixed number of samples per class), base
classes are {‘cat’, ‘dog’, ‘cow’} and ‘horse’ and ‘sheep’ are added at the incremental steps.
10% of each class data is added to the memory.
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(c) Extend min(w,h) to make
it equal such that w equals h

(b) Animal to be cropped

Flipping
(a) Input Image

h == w ?h

w

Yes

No

(d) Applying general augmentations 

Adding noise Rotation

Extension
possible 

?

Yes

Pad image with zeros

No

Figure 4: Details of image data pre-processing pipeline. (a) Input Image, (b) we select only the
object of interest (animals in our case) as an input to the model, (c) if the selected object of interest
has rectangular bounding box we directly extend it or pad zeros to make it a square shaped box and
then crop it out, (d) we finally perform various augmentations like flipping, adding noise, rotation and
combinations of these.

7 Dataset Pre-Processing
Given an image, which may contain multiple animals in it, we crop out each animal using
the ground-truth bounding boxes provided with the dataset. These bounding boxes can be
rectangular in shape. In order to explicitly convert them to a square bounding box, we extend
the smaller side of the rectangle to make it a square. However there can be an edge case,
where while extending the bounding box we may exceed the image boundary region. To
overcome this problem, we pad the image with zeros and then extend the smaller side of
rectangle to make it a square. After getting a square shaped crop of the animal image, we
resize it to a fixed image size across all the input images. We further augment the data
by Flipping, adding Gaussian Noise, Rotating the images by a small random angle, and a
combination of these augmentation strategies. These augmentations helps to increase the
training set size and act as a regularizer to reduce overfitting in our pose estimation model.
An overview of the data pre-processing pipeline is provided in Figure 4.

8 Visualization
We provide visualization of some pre-processed samples and their ground-truth keypoints
labelled in Figure 5. Red points in the figure show the ground-truth keypoint label. There
are total 17 keypoints labelled for each image, namely two ‘Eyes’, two ‘Earbases’, ‘Nose’,
four ‘Elbows’, four ‘Knees’ and four ‘Paws’.

As explained in the main draft, the ground-truth keypoints are converted to Gaussian
heatmaps to assist in training the pose estimation model. To generate the Gaussian heatmaps
we center each keypoint on the spatial coordinates of the keypoint. A visualization of the
input image and the summation of the heatmaps for all the keypoints is provided in the
Figure 6.
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(a) (b) (c)
Figure 5: Visualization of animals and their keypoints labelled.

Figure 6: The images in (a) are the input images for various classes of animals from Animal-
Pose Dataset [11]. The images in (b) are Summation of all the 17 heatmaps of the keypoints
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